Category Archives: Conference Presentations

Presentations made at conference

Euromicro Conference on Digital System Design (DSD) 2007

Facebooktwittergoogle_plusredditpinterestlinkedinmail

 

Safety-critical systems nowadays include more and
more embedded computer systems, based on different hardware
platforms. These hardware platforms, reaching from microcontrollers
to programmable logic devices, lead to fundamental
differences in design. Major differences result from different
hardware architectures and their robustness and reliability as
well as from differences in the corresponding software design.
This paper gives an overview on how these hardware platforms
differ with respect to fault handling possibilities as fault avoidance
and fault tolerance and the resulting influence on the safety
of the overall system.

dsd

 

A Comparative Survey

Facebooktwittergoogle_plusredditpinterestlinkedinmail

IEEE ISIE 2008

Facebooktwittergoogle_plusredditpinterestlinkedinmail

From the functionality point of view, FPGAs became
very interesting for industrial applications. Reasons are the
constantly decreasing costs of microelectronics and improvements
in the corresponding design tools as well as the increasing need
of complex real-time functionalities in these applications. However,
other non-functional requirements have to be considered.
Therefore, the potentials of FPGAs for industrial applications
are considered in this paper on basis of hardware attributes
representing the contribution of these systems to system qualities
as for example performance, reliability and marketability.

isie

Systematic Considerations for the Application of
FPGAs in Industrial Applications

Facebooktwittergoogle_plusredditpinterestlinkedinmail

DASIA 2013

Facebooktwittergoogle_plusredditpinterestlinkedinmail

dasia

This paper describes a proposal for a
space flight demonstration of a low
power, compact Dynamically
Reconfigurable Programmable Board
(DRPB) based upon a minor evolution
of the Astrium Janus payload for
UKube 1.

A PROPOSAL FOR A SPACE FLIGHT DEMONSTRATION OF A DYNAMICALLY RECONFIGURABLE
PROGRAMMABLE MODULE WHICH USES FIRMWARE TO REALISE AN ASTRIUM PATENTED COSMIC
RANDOM NUMBER GENERATOR FOR GENERATING SECURE CRYPTOGRAPHIC KEYS

Facebooktwittergoogle_plusredditpinterestlinkedinmail

FPGA Forum 2015 Key Note

Facebooktwittergoogle_plusredditpinterestlinkedinmail

ff

The last 20 years have seen the explosion of FPGA technology used in many different end applications, including those within harsh environments. It therefore follows that system developers wish these devices to operate correctly and safely regardless of environment. When engineers design for a space flight mission, there are a number of environmental factors that may impact mission performance: radiation; temperature; and the dynamic environment. How much weighting each of these environmental factors has depends upon the end space application which are typically grouped into one of three categories Launcher, Science / Exploration or Telecommunication.  Regardless of the end application the engineer must consider FPGA technology, Mitigation strategies at both the FPGA and System level along with lessons learned from previous missions. However, these techniques and mitigation strategies are not just limited to space applications but can also be applied to terrestrial applications

Slides 

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Design West 2013

Facebooktwittergoogle_plusredditpinterestlinkedinmail

dw13

Space: The Final Frontier – FPGAs for Space and Harsh Environments

The last 20 years have seen the explosion of FPGA technology used in many different
end applications, including those within harsh environments. It therefore follows that
system developers wish these devices to operate correctly and safely regardless of
environment. When engineers design for a spaceflight mission, there are three main
environmental factors that will impact performance: radiation; temperature; and
vibration and shock

Paper available here :- ESC-322Paper_Taylor

Slides Available here :- ESC-322Slides_Taylor

dw132

White Paper – Flying High-Performance FPGAs on Satellites: Two Case Studies

When considering flying an FPGA within a satellite mission, ensuring the device and design will work
within the radiation environment is the first of a number of parameters to take into account. In this
paper I am going to consider the parameters which must be considered when flying a highperformance
FPGA in two very different missions.

  • Ukube1, a CubeSat mission scheduled for launch in late 2013
  • A generic FPGA processing card for use in a number of GEO missions

Of these two missions, one UKube has been delivered for launch, while the generic FPGA processing
card is currently in development. Both of these missions have their own challenges and unique
requirements which need to be addressed. At the same time, however, both missions also have
common driving requirements.

Paper available here :- STS-401Paper_Taylor

Slides available here :- STS-401Slides_Taylor

Facebooktwittergoogle_plusredditpinterestlinkedinmail