Generating a VGA Test Pattern


In my original article, we discussed how we could use two counters — the pixel counter and the line counter — to generate the “H_Sync” (horizontal sync) and “V_Sync” (vertical sync) signals that are used to synchronize the VGA display. Now, in this article, we will consider how to also generate some RGB (red, green, and blue) signals to create an image on the display.


My Spartan 3A development board.

The first step was for me to retrieve my trusty Spartan 3A development board, which I had loaned to a friend at work. Once I had this board back in my hands, I started to ponder my implementation. Sadly my development board does not contain proper digital-to-analog converters (DACs) that can be driven by 8-bit wide red, green, and blue signals generated by the FPGA. Instead, it uses only four bits to represent each color, and it employs a simple resistor network to convert these digital outputs into corresponding analog voltages.

This means the color palette of my Spartan board is limited to four bits for the red channel, four bits for the blue channel, and four bits for the green channel, which equates to 2^4 x 2^4 x 2^4 = 4,069 colors. Although this 12-bit color scheme is admittedly somewhat limited, as we shall see it can still provide excellent results.

The next problem is the amount of memory required to hold the image. Once again, I had originally planned on storing an 800 x 600 pixel image in a frame buffer on the FPGA as described in Max’s article. Even with my limited color palette, however, just one frame would require 800 x 600 x 12-bits, which equals 5.76 megabits of RAM. This is more memory than is available in the FPGA on my development board.

As a “cheap-and-cheerful” alternative, I decided to generate a series of simple test patterns algorithmically. A high-level block diagram of my VGA test pattern generator is illustrated below:


High-level block diagram of my VGA test pattern generator.

First we have a “System Clock,” which is used to synchronize all of the activities inside the FPGA. The “VGA Timing” module comprises the pixel and line counters we discussed in my original article. In addition to generating the “H_Sync” and “V_Sync” signals that are used to synchronize the VGA display itself, this module also generates a number of other signals that are used to control the “VGA Video” module.

The “Algorithmic Test Pattern Generator” module is used to generate a series of simple test patterns. The “VGA Video” module takes these test patterns and presents them to the outside world in the form of the three 4-bit RGB signals that are presented to the DACs (or resistor networks, in the case of my development board).

Actually, I should note that in my real-world implementation, the “Algorithmic Test Pattern Generator” and “VGA Video” modules are one and the same thing, but it’s easier to think of them as being separate entities for the purposes of these discussions.

My implementation of this test pattern generator consumes only a small portion of the resources available on my Spartan FPGA. In fact, it requires just 96 slices out of the 5,888 slices that are available, which means it utilizes less than 2 percent of the chip’s total resources.

To be honest, I’m glad that the limitations of my development board forced me to take this intermediate step — that is, to create a test pattern generator. This is because a test pattern provides the simplest way to output images to prove that the backend display drivers are working correctly. Generating a test pattern (or a series of test patterns, in this case) is a good idea for a variety of reasons:

  • It allows the RGB color outputs to be verified to prove that they are functioning correctly. This can be achieved by displaying incremental bars where the color is gradually increased from 0 to its maximum value.
  • It allows the timing to be checked. Is the frame updating correctly? Are the borders correct? And so forth.
  • More advanced test patterns can be used to align the image with a camera viewfinder on systems that are used to capture real-world images.

As an aside, a famous television test pattern many people will recognize is the Indian Head Test Card. This was common in America until the early 1970s, at which time it was replaced by the SMTPE Color Bars.

If you wish to probe deeper into my design, click here to download a ZIP (compressed) version of my project file. As you will see, this design consists of one structural unit tying together two modules: the “VGA Timing” module and the “VGA Video” module (which includes the algorithmic test pattern generation code as noted above).

The “VGA Video” module outputs the RGB video signals during the active periods of the video display period, as can be seen in the results of the simulation shown in the following screenshot:


The results from my initial simulations.

Again, the values in the line and pixel counters in the “VGA Timing” module are used by the “VGA Video” module to determine positions on the screen and to decide when the RGB outputs need to be manipulated to achieve the desired result.