Tag Archives: connectors

Defining and Selecting Module Connectors

Facebooktwittergoogle_plusredditpinterestlinkedinmail

When designing any electronic system the modules connectors will have a significant impact upon the system reliability.

The system could be designed for a traditional high reliability application like railway, aerospace, medical, military or maybe an emerging one like high frequency trading.

Perhaps the first and simplest approach is to group the connectors in the functional types Power, Control, Data and Clocks etc. as each of these will be addressed in a different manner.

For instance it is possible to have prime and redundant power connectors, but if your system has a large number of data interfaces then it is not possible to have prime and redundant connectors for each input. This may lead to the need for system level redundancy in the worse case.

Regardless of the connector function we need to consider the following aspects

• Pin Derating, maximum reliability of a component is achieved by reducing the electrical stress placed upon it. There are many different standards for this (ESA, NASA, US Military etc) however; the basic idea is to reduce the voltage and current applied to the pins.

• Connector pin out, can a power pin short to a ground pin which will effect the overall power distribution system. It is therefore a good idea to ensure separation of power and ground separating them correctly. If necessary you can use unused pins to add isolation.

• Use of different connector types, styles and keying to prevent incorrect mating of connectors when the system is assembled. An incorrect assembly and power application could result in many hours of design analysis to prove no parts have been subject to electrical overstress.

• Number of mating cycles, the number of times the modules are mated / de-mated from the system has to be recorded. For this reason many designers use connector savers which can be connected to the system and reduce the number of mating cycles.

• Suitability for the job at hand for example if your system uses high speed serial links to communicate then your connector requirements will be very different from a power interface or low speed interface.

• Environmental and Dynamic considerations, many high reliability systems see extremes of temperature, vibration and shock. Can the connector system survive the demands and still stay connected.

Once you have determined your connector philosophy the next stage is ensuring you have a reliable system is in ensuring you cannot propagate a fault outside of your unit should a failure within occur.

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Six Aspects to consider designing your PCB

Facebooktwittergoogle_plusredditpinterestlinkedinmail

pcbDesigning a PCB for current devices is a very complex and often over looked area instead focus falls upon the more interesting FPGA or Processors. However, the fact remains that without getting the board correct in the first place you may find you have issues either sooner or later so what are the main aspects of a modern PCB should we be concerned about.

  • PCB Stack up – the keystone of the entire PCB this defines the number of layers within the PCB (More layers can increase the cost) along with allowing the engineering team to establish the characteristic impedance on the required layers. This like many things in engineering becomes a trade-off between fabrication processes and layer count to achieve the reliability, yield and cost targets.
  • Via Types – Via’s enable interconnection between the layers and components however, there are many different types Through, Buried, Blind, and Micro (are these single layer, multi-layer or stacked). The best designs minimise the different types of via, close discussion with your selected PCB supplier is also important to ensure you’re via types are within their capabilities. You will also need to ensure the current carrying capacity of the different via types to ensure for high current paths you can parallel up.
  • Design Rules – These will address both rules for the design i.e. component placement, crosstalk budgets, layer allocation, length matching / time of flight analysis and so on. It will also include design for manufacture rules which ensure the finished design can actually be manufactured for instance are the via aspect rations correct.
  • Breakout strategy – before you can begin to verify your signal and power integrity you must first ensure you can break out and route all of the signals on high pin count devices. This will also affect the stack up of the PCB board for instance should you use micro via break out (most probably yes), how deep should these be is stacked micro via required. Once you have a defined stack for the PCB you can think of your routing strategy will it be the traditional North South East West, a layer based breakout or a hybrid style.
  • Signal Integrity – the most commonly considered aspects of designing a good PCB typically an engineer will consider aspect such as signal rise and fall times, track length and characteristic impedance, drive strength and slew rate of the driver and termination. To ensure the best performance SI simulations will be performed pre layout and post layout of the PCB, you will also need to consider the Cross talk budget.
  • Power Integrity – high performance devices especially modern FPGA and ASICs can require large currents at low voltages. Ensuring both the DC and AC performance of the power distribution network is of vital importance

Of course the list above is by no means complete however, it provides a good starting point

Facebooktwittergoogle_plusredditpinterestlinkedinmail

Design Reliability: MTBF Is Just the Beginning Issue 88

Facebooktwittergoogle_plusredditpinterestlinkedinmail

xilinx88

When most engineers think about design reliability, their minds turn to a single, central metric: mean time between failures. MTBF is, in fact, an important parameter in assessing how dependable your design will be. But another factor, probability of success, is just as crucial, and you would do well to take note of other considerations as well to ensure an accurate reliability analysis and, ultimately, a reliable solution.

Link here

 

Facebooktwittergoogle_plusredditpinterestlinkedinmail